Optimal long-time Lp(0, T) stability and semidiscrete error estimates for the Volterra formulation of the linear quasistatic viscoelasticity problem
نویسندگان
چکیده
The purpose of this article is to show how the solution of the linear quasistatic (compressible) viscoelasticity problem, written in Volterra form with fading memory, may be sharply bounded in terms of the data if certain physically reasonable assumptions are satissed. The bounds are derived by making precise assumptions on the memory term which then make it possible to avoid the Gronwall inequality, and use instead a comparison theorem which is more sensitive to the physics of the problem. Once the data-stability estimates are established we apply the technique also to deriving a priori error bounds for semidiscrete nite element approximations. Our bounds are derived for viscoelastic solids and uids under the small strain assumption in terms of the eigenvalues of a certain matrix derived from the stress relaxation tensor. For isotropic materials we can be explicit about the form of these bounds, while for the general case we give a formula for their computation.
منابع مشابه
Optimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملDiscontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity
We consider a finite-element-in-space, and quadrature-in-timediscretization of a compressible linear quasistatic viscoelasticity problem. The spatial discretization uses a discontinous Galerkin finite element method based on polynomials of degree r—termed DG(r)—and the time discretization uses a trapezoidal-rectangle rule approximation to the Volterra (history) integral. Both semiand fully-disc...
متن کاملNumerical Solution of Linear Quasistatic Hereditary Viscoelasticity Problems
We give a space-time Galerkin nite element discretization of the linear quasistatic compressible viscoelasticity problem as described by an elliptic partial diierential equation with a Volterra (memory) term. The discretization consists of a continuous piecewise linear approximation in space with a discontinuous piecewise constant or linear approximation in time. We derive an a priori maximum-e...
متن کاملError Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations
We consider the initial boundary value problem for the homogeneous time-fractional diffusion equation ∂ t u − ∆u = 0 (0 < α < 1) with initial condition u(x, 0) = v(x) and a homogeneous Dirichlet boundary condition in a bounded polygonal domain Ω. We shall study two semidiscrete approximation schemes, i.e., Galerkin FEM and lumped mass Galerkin FEM, by using piecewise linear functions. We establ...
متن کاملSemidiscrete Finite Element Approximations of a Linear Fluid-Structure Interaction Problem
Semidiscrete finite element approximations of a linear fluid-structure interaction problem are studied. First, results concerning a divergence-free weak formulation of the interaction problem are reviewed. Next, semidiscrete finite element approximations are defined, and the existence of finite element solutions is proved with the help of an auxiliary, discretely divergence-free formulation. A ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 88 شماره
صفحات -
تاریخ انتشار 2001